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Abstract. A survey of progress in recent years suggests we are moving towards a quantitative understanding of
the whole cosmic ray spectrum, and that many bumps due to different components can hide beneath a smooth
total flux. The knee is much better understood: the KASCADE observations indicate that the spectrum does
have a rather sharp rigidity cut-off, while theoretical developments (strong magnetic field generation) indicate that
supernova remnants (SNR) of different types should indeed accelerate particles to practically this same maximum
rigidity. X-ray and TeV observations of shell-type supernova remnants produce evidence in favour of cosmic-ray
origin in diffusive shock acceleration at the outer boundaries of SNR. There is some still disputed evidence that the
transition to extragalactic cosmic rays has already occurred just above 1017 eV, in which case the shape of the whole
spectrum may possibly be well described by adding a single power-law source spectrum from many extragalactic
sources (that are capable of photodistintegrating all nuclei) to the flux from SNRs. At the very highest energy,
the experiments using fluorescence light to calibrate energy do not yet show any conflict with an expected GZK
“termination”. (And, in “version 2”,) Sources related to GRBs do not appear likely to play an important role.

1. Introductory overview

Because cosmic rays span such a huge range of energy,
it is natural to start from a very deceptive broad view
of the cosmic ray spectrum, such as that shown in figure
1, due to Gaisser (2005), which shows the flux reaching
the Earth, in the form of the energy carried by particles
per unit interval of ln(E), or E2J(E), where J(E) is the
number of particles arriving per unit interval of time, area,
solid angle and kinetic energy, E. At the lowest energies,
the fluxes of different nuclei can be measured, protons be-
ing the most numerous, and other common nuclei having
practically the same shape of spectrum as a function of
rigidity (momentum/charge ∝ energy/charge at these rel-
ativistic energies). To identify the particles clearly, they
have to be detected before they are broken up in the at-
mosphere, in detectors carried by balloons or satellites,
and the flux is too low for this above about 105 GeV (1014

eV): beyond here the total flux of all particle types can
be recorded by air shower experiments. The well-known
power-law spectrum, J(E) ∝ E−2.7 holds to a good ap-
proximation before the “knee”, the downward bend near
1015.5 eV, the fall-off below 10 GeV being a very local
effect within the solar system. For 3 decades of energy
above the knee the flux continues to fall somewhat more
steeply, to the “ankle”, where the rate of fall briefly be-
comes less steep again, until statistics and possibly flux
peter out near 1011 Gev (1020 eV). At energies of several
GeV there is good evidence from gamma rays produced in
nuclear collisions (e.g. Hunter et al. 1997) that the cosmic
rays originate in the Galaxy, and diffuse out; and the belief
that the major source is acceleration at the outer shock
boundaries of expanding supernova remnants (SNR) has
strengthened recently in several ways, outlined below.

It now seems likely that this bland shape masks a su-
perposition of bumps and variations which each tell their
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Fig. 1. Many measurements of the cosmic ray flux over a
wide energy range, assembled by Gaisser

own story, though few of them can yet be disentangled
clearly, so this field of diagnosing the components is still
very active.

(Hillas (2006))
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(Image credit: NASA/DOE/Fermi LAT Collaboration)
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(H. E. S. S. Collaboration et al. (2018))
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Galactic CR Transport

To Do

Consistency of CRs & gamma rays

Dynamics

Numerical accuracy
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To Do

Modelling of stellar winds

Particle acceleration

Fit to observations
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Numerical Methods

To Do

New numerical methods

Optimising numerical schemes

Verification of codes
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